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Quantum chaos induced by nonadiabatic coupling in wave-packet dynamics
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The effect of nonadiabatic coupling due to breakdown of the Born-Oppenheimer approximation on chaos is
investigated. A couple of measures~indicators! that detect the extent of chaos in wave-packet dynamics on
coupled potential functions are devised. Using them, we show that chaos is indeed induced by a nonadiabatic
coupling in individual time-dependent wave-packet dynamics. This chaos is genuinely of quantum nature,
since it arises from bifurcation and merging of a wave packet at the quasicrossing region of two coupled
potential functions.
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Quantum dynamics on coupled potential functions,
other words, nonadiabatic dynamics@1#, which is actually
realized in molecular vibrations and chemical reactions, p
vides a very unique subject in the study of quantum chao
total molecular wave function is usually expanded as~we
here confine ourselves to a two-state model, and
generalization is trivial! C(r ,R,t)5f1

a(R,t)F1
a(r ;R)

1f2
a(R,t)F2

a(r ;R), where F1
a(r ;R) and F2

a(r ;R) are the
eigenfunctions~with r the electronic coordinates! of the elec-
tronic Hamiltonian given at each nuclear positionR. The
equations of motion for the nuclear wave functionsf i

a(R,t)
are given in the following coupled form:

i\
]

]t S f1
a

f2
aD 5S T1V1

a~R! X12~R!

X21~R! T1V2
a~R!

D S f1
a

f2
aD . ~1!

The Born-Oppenheimer approximation neglects the coup
elementsX12(R) andX21(R), and effectively decouples Eq
~1! as

i\
]

]t
f1

a~R,t !5@T1V1
a~R!#f1

a~R,t !. ~2!

Vi
a(R) are called the adiabatic potentials.~See, however, Ref

@2# for the conical intersection, in which the coupling is i
finite.! Since Eq.~2! has a direct classical counterpart, ma
studies have been made on the quantum manifestation o
corresponding classical chaos, the so-called quantum ch
ogy @3–5#. In reality, however, the nuclear wave packets
Eq. ~1! can bifurcate and merge among themselves due to
coupling elements, thereby bringing about a complicated
mixing of quantum waves. The manner of such remixing c
depend on the types of nonadiabatic coupling@2#. The pio-
neering work on chaos due to nonadiabatic coupling
been made by Cederbaum and his co-workers, who w
actually studying the dynamics associated with the con
intersections in the vibronic coupling of NO2, C2H4

1 , and
other molecules@2,6#. Heller also investigated randomne
induced by semiclassical hopping of trajectories among
relevant diabatic potential functions@7#. It is thus established
that the nonadiabatic transition can induce chaos, which
no naive classical counterpart.
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The coupled Schro¨dinger equations similar to Eq.~1! ap-
pear also in different studies of physics; the interaction
electron spin with an oscillating electric field described
terms of the spin-boson Hamiltonian@8–10#, the quantum
mechanical entanglement among composite subsyst
@11,12#, and so on.

An essential analysis on the mechanism of chaos in no
diabatic systems of the conical intersection has been mad
Leitner et al. @13#. Among others, they have shown that th
nonadiabatic chaos they studied reflects mostly chaos on
lower one of the corresponding adiabatic potentials, Eq.~2!.
The latter chaos can readily be induced since the lower a
batic potential is already highly anharmonic~often of a
double-well shape! due to the underlying coupling betwee
the electronic wave functions of different natures. Theref
it is never easy to tell whether the above type of remixing
quantum waves purely causes chaos. Fujisaki and Takat
have investigated this particular aspect to show that this
indeed be the case depending on the strength of nonadia
coupling and a topographical relation between two adiab
potential surfaces@14#. The basic strategy was to find a full
chaotic nonadiabatic system that has a regular or weakly
otic dynamics in the lower adiabatic counterpart. Howev
their numerical study, and those by Cederbaum and
workers@2,6,13# as well, resorted to the level statistics of a
ensemble of eigenvalues such as the spectral rigidityD3
statistics! @5,15,16# and the nearest-neighbor level-spaci
distribution @5,17#. Here in this report, we show that th
nonadiabatic transition can indeed induce chaos in an i
vidual wave-packet dynamics.

The present study is restricted within pure quantum m
chanics. As far as quantum chaos on a single potential
face is concerned@Eq. ~2!#, many sensitive measures~indi-
cators! to detect ‘‘chaos’’ have been proposed from ma
different dynamical aspects@4,5,18–26#. However, these
measures are not necessarily suitable to study whether
nonadiabatic interaction itself can cause chaos, simply
cause they are not so designed. As an illustrat
example, let us consider the ‘‘entropy’’ forf1

a(t) as V
52Tr@ uf1

a(t)&^f1
a(t)u lnuf1

a(t)&^f1
a(t)u#, which is time inde-

pendent and hence one should redefine it asV̂5
2*dRuf1

a(R,t)u2lnuf1
a(R,t)u2 ~Ref. @25#!. One can naively

extend the entropy to the nonadiabatic case
©2002 The American Physical Society03-1
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Eq. ~1! as Vnad52Tr@ uf1
a(t)&^f1

a(t)u lnuf1
a(t)&^f1

a(t)u#
2Tr@ uf2

a(t)&^f2
a(t)u lnuf2

a(t)&^f2
a(t)u#. But this quantity is al-

ready time-dependent in contrast toV. ~The correct form can
be actually constructed, but it is too complicated for nume
cal application.! Likewise, one can define

V̂nad52E dRuf1
a~R,t !u2lnuf1

a~R,t !u2

2E dRuf2
a~R,t !u2lnuf2

a~R,t !u2.

However, this entropy should become larger anyway whe
wave packet is bifurcated ontoV1

a(R) and V2
a(R) irrespec-

tive of the presence of chaos. It is therefore quite difficult
determine whether the increment of the entropy is origina
from chaos or the nonadiabatic interaction. Similar
straightforward application of other existing indicators cou
not necessarily work well. We therefore take this opportun
to reconsider the measure of chaos.

An important property of a classically mixed state is th
two phase-space distribution functions, sayG(t) andG8(t),
whose initial distributionsG(0) andG8(0) are slightly dif-
ferent from each other, are relaxed to a same state irres
tive of their initial difference, usually in a manner thatG(t)
2G8(t)5„G(0)2G8(0)…exp(2at). A direct application of
the above idea is to calculate a distance between two q
tum density operators,rm(t)5ucm(t)&^cm(t)u and rm8(t)
5ucm8(t)&^cm8(t)u, wherem andm8 specify the initial con-
ditions of wave packets. A rather general definition of a d
tance between the two densities is Tr„rm(t)2rm8(t)…

N with
an arbitrarily integerN. However, in contrast to the classic
exponential decay, one always have Tr„rm(t)2rm8(t)…

N

5Tr(rm(0)2rm8(0)…N for anyN. This is due to the quantum
coherence arising from Hermiticity of the Hamiltonian. W
therefore make the density operatorspartly decoherent. We
define local areasAi ( i 51,2, . . . ) in configuration space
which are mutually exclusive,AiùAj5f. The projection
operator associated withAi is Pi5*Ai

drur &^r u, with the ba-

sic propertiesPi Pj5Pid i j , ( i
allPi5I , and @Pi ,H#Þ0. A

density operator sandwiched byPi as rm( i )(t)5Pirm(t)Pi
5Pi ucm(t)&^cm(t)uPi plays a key role as in the theory o
Pechukas@22#. rm( i )(t) may be regarded as a density crea
by an observation process that is associated withPi at timet
@22#. The norm is well conserved in the modified densi
that is, ( iTr rm( i )5Tr rm . However, at the same time, w
should note the fact that( iTr rm( i )

N ÞTr rm
N for N>2. Hence,

a natural definition of the distance between two partly de
herent density operators is

D0~ t !5(
i 51

M

Si
22Tr@rm( i )~ t !2rm8( i )~ t !#2, ~3!

whereSi5Tr Pi is a normalization factor.M is the number of
partitioning of the entire space. It is our usual practice
divide the space in such a way thatSi5Sj for all i and j.

One can formulate another simple idea of the distan
which is similar to but different fromD0(t). Let us consider
the standard distance between two state vectors in the Hi
03520
i-

a

d
,

y

t

ec-

n-

-

d

,

-

o

e,

ert

space asu^cm(t)2cm8(t)ucm(t)2cm8(t)&u. As above, it is
quite natural to define the following quantity:

D3~ t !5(
i

Si
22u^cm~ t !2cm8~ t !uPi ucm~ t !2cm8~ t !&u2,

~4!

which can measure the relaxation of a wave function in
Hilbert space.D3(t) retains more information of quantum
phase thanD0(t) does. We now test howD0(t) and D3(t)
work in a single potential dynamics.

The following two-dimensional modified He´non-Heiles
system @27#, H5px

2/2mx1py
2/2my1(x21y2)/21x2(ay2

1y)1y3(by21)/3, is convenient to test the indicator
since its chaotic properties have been well studied. We h
set a50.6, b50.2 ~see Fig. 1!, mx51.0087, andmy51.0.
An initial wave function is a coherent-state Gaussian wa
packet cm(x,y)5N exp@2(x2x0)

2/2\1 ipx0(x2x0)/\2(y
2y0)2/2\1 ipy0(y2y0)/\#, with \50.005 throughout. We
have chosen four sets of the parametersm
5(x0 ,px0 ,y0 ,py0), as listed in Table I, so as to correspon

TABLE I. Initial locations, momenta, and classical energi
characterizing the initial Gaussian wave packets.

x0 y0 px0 py0 Ecl

~a! 0.1 0.1 0 0 0.010 73
~b! 0 20.2 0.5066 0 0.15
~c! 0 0.32 0.3594 20.3 0.15
~d! 0.42 0.425 0 0 0.249 186

FIG. 1. Wave functions on the modified He´non-Heiles potential
after propagating up tot5200. ~Absolute units are used through
out.!
3-2
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to four typical classical motions, which are~a! highly regu-
lar, ~b! weakly regular on a torus near the quasiseparatrix,~c!
weakly chaotic in a relatively thin quasiseparatrix, and~d!
strongly chaotic in a wide chaotic sea. The magnitude of
classical Liapunov exponent should be of the order of~a! ,
~b! , ~c! , ~d!. Figure 1 displays the snapshots of these fo
ucm(x,y,t)u2 at t5200. They clearly display the increasin
extent of randomness of the wave packets from the panel~a!
to ~d!. For a givencm , a slightly different wave packetcm8
is generated by settingm85(x020.01,px0 ,y0 ,py0). Figure 2
showsD0(t) andD3(t) for the above packets. As expecte
they basically exhibit decaying patterns. BothD3(t) and
D0(t) show exponential-like decay in the early stage. Ho
ever, they also bear a large fluctuation, which reflects sign
cant deformation of the wave packets at the turning poi
Therefore it would not be a good idea to utilize the expon
in the initial decay as an indicator of chaos. In a later sta
the decay slows down and eventually undergoes satura
which is a major difference from the classical ergodici

~Recall that the entropyV̂ also shows the similar saturatio
bounded from above@25,26#.! Even if partial decoherenc
has been introduced through Eqs.~3! and ~4!, cm(t) and
cm8(t) themselves do never coincide with each other.@Recall
that D3(t) andD0(t) are both time independent for no pa
tition of space (M51).# The present results have been giv
by the partition numberM5256 ~16 by 16!. However, our
numerical survey shows that the dependence ofD0(t) and
D3(t) on M is neither very significant nor qualitative fo
sufficiently largeM @28#. It is expected that bothD3(t) and
D0(t) should be bounded from below even for infinite
large partitioning (M→`), unless the wave functionscm(t)

FIG. 2. Chaos on the modified He´non-Heiles potential function
log10D0(t) and log10D3(t) in the top and bottom panels, respe
tively, are plotted versust. The curvesa–d correspond, respec
tively, to the wave packetsa–d in Table I and Fig. 1.
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andcm8(t) have infinitesimally fine structures~oscillations!
in their spatial distributions, which never happens in our g
neric systems. Anyhow, it turns out that the ‘‘converg
value’’ of D3(t) at a larget (t→`) exhibits a remarkable
distinction of their ‘‘chaoticity’’: D3(t) damps to a smaller
value~with a faster speed! for more chaotic wave packet. O
the other hand,D0(t) is found to be not so sensitive asD3(t)
is.

Now we proceed to our goal by extending the above d
tance D0(t) for a nonadiabatic system of Eq.~1!. Let us
write such a vector wave function asucm&5(ufm

(1)& ufm
(2)&) tr ,

where againm specifies an initial condition and tr means th
transposition. The corresponding density operator isrm

5(ufm
(1)& ufm

(2)&) tr(^fm
(1)u ^fm

(2)u) and the projected densit
operator is defined as a diagonal matrixrm( i )

5diag(Pi ufm
(1)&^fm

(1)uPi Pi ufm
(2)&^fm

(2)uPi). Then, D0(t) is
readily extended as

D0~ t !5(
i 51

M

Si
22Tr~rm( i )2rm8( i )!

2. ~5!

The extension ofD3(t) is also straightforward, that is,

D3~ t !5(
i

Si
22$u^fm

(1)2fm8
(1)uPi ufm

(1)2fm8
(1)&u2

1u^fm
(2)2fm8

(2)uPi ufm
(2)2fm8

(2)&u2%. ~6!

FIG. 3. Quantum chaos induced by the nonadiabatic coupl
~a! log10D3(t) versust. The upper and lower curves arise from th
adiabatic and nonadiabatic dynamics, respectively.~b! The same as
in the panel~a!, but D0(t) in place ofD3(t). ~c! A wave packet on
the lower adiabatic potential surface.~d! The lower-part componen
of the corresponding nonadiabatic wave packet.
3-3
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We now consider a nonadiabatic problem arising fro
breakdown of the Born-Oppenheimer approximation. Our
vestigated system is a simple model system extensively s
ied by Heller @7#, which consists of a pair of two
dimensional harmonic potentials in diabatic representa
plus associated coupling elements. These two harmonic
tentials make a skew angleu, which is called the Duschinsky
angle. Its Hamiltonian system isHi j 5Td i j 1Vi j

d ( i , j 51,2),

where T5 1
2 (px

21py
2), Vii

d 5 1
2 (vx

2j i
21vy

2h i
2)1e i ( i 51,2);

with a coordinate transformationj15x cosu2(y1y0)sinu,
h15x sinu1(y1y0)cosu and j25x cosu1(y2y0)sinu, h2
52x sinu1(y2y0)cosu. The off-diagonal elements are a
sumed to have a formV12

d 5V21
d 5 f exp@2a„V2

d(x,y)
2V1

d(x,y)…2#, which gives the coupling along the crossin
seams. The parameters used arevx

250.872, vy
251.175, e2

2e150.001, y050.25, u5p/6, a5500, and f 50.0075.
The relationship between the adiabatic and diabatic repre
tations is in general quite involved, but nonetheless found
be subject to an interesting mathematics of gauge the
@29,30#. In this paper, our ‘‘simulated’’ adiabatic potentia
surfaces are generated by (x,y)-dependent orthogonal trans
formation of the diabatic potentialsVi j

d . The adiabatic poten
tial surfacesV1

a(x,y) andV2
a(x,y) are ordered in such a wa

that V1
a(x,y),V2

a(x,y), and henceV1
a(x,y) „V2

a(x,y)… is
called the lower~upper! adiabatic potential surface. Refer
Fig. 3~c! for V1

a(x,y).
To see the effect of the nonadiabatic transition, we co

pare the wave-packet dynamics on the lower adiabatic po
tial V1

a(x,y) in Eq. ~2! alone and that of the total Hamiltonia
m

s
f

tt

er

. A

ev

et

ys
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in Eq. ~1!. The relaxation process onV1
a(x,y) and that in the

nonadiabatic system are measured separately with
slightly different wave packetscm andcm8 in terms ofD0(t)
and D3(t). Figure 3 shows a generic example taken fro
many calculations. Again, the similar Gaussian wa
packet is selected withm5(x0 ,px0 ,y0 ,py0)5(0.0,0.0,
20.770 667,0.0). The trajectory onV1

a(x,y) starting with
this initial condition is regular, which has been confirm
using the Poincare´ surface of section set at the saddle poi
~No naive classical motion exists in the nonadiabatic s
tem.! Figure 3~a! showsD3(t) for the quantum dynamics on
the lower adiabatic potential and that in the nonadiaba
system. The solid curve having the higher value represe
the dynamics onV1

a(x,y), whereas the lower one~broken
line! arises from the nonadiabatic system. It clearly e
dences that the nonadiabatic interaction applied toV1

a(x,y)
has induced chaos in a significant magnitude. The sim
situation is also observed inD0(t), Fig. 3~b!, which turned
out to be less sensitive to chaoticity as in Fig. 1. The cont
plot of the wave packet onV1

a(x,y) @Fig. 3~c!# and that on
the lower adiabatic surface in the nonadiabatic system@Fig.
3~d!#, at t5150, visually supports the above conclusion. It
thus confirmed that the nonadiabatic interaction can ind
induce chaos in the level of wave-packet dynamics. M
extensive and systematic analyses will be reported in fu
@28#.

The authors thank Dr. H. Fujisaki for valuable discu
sions.
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@6# E. Haller, H. Köppel, and L.S. Cederbaum, Chem. Phys. Le

101, 215 ~1983!.
@7# E.J. Heller, J. Chem. Phys.92, 1718~1990!.
@8# R. Graham and M. Ho¨hnerbach, Z. Phys. B: Condens. Matt

57, 233 ~1984!.
@9# L. Müller, J. Stolze, H. Leschke, and P. Nagel, Phys. Rev

44, 1022~1991!.
@10# L. Bonci, R. Roncaglia, B.J. West, and P. Grigolini, Phys. R

Lett. 67, 2593~1991!.
@11# A. Tanaka, J. Phys. A29, 5475 ~1996!; Phys. Rev. Lett.80,

1414 ~1998!.
@12# K. Furuya, M.C. Nemes, and G.Q. Pellegrino, Phys. Rev. L

80, 5524~1998!.
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